首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6120篇
  免费   1166篇
  国内免费   142篇
电工技术   83篇
综合类   309篇
化学工业   3030篇
金属工艺   69篇
机械仪表   59篇
建筑科学   151篇
矿业工程   63篇
能源动力   127篇
轻工业   2154篇
水利工程   27篇
石油天然气   110篇
武器工业   22篇
无线电   195篇
一般工业技术   832篇
冶金工业   76篇
原子能技术   36篇
自动化技术   85篇
  2024年   43篇
  2023年   221篇
  2022年   218篇
  2021年   414篇
  2020年   377篇
  2019年   351篇
  2018年   296篇
  2017年   338篇
  2016年   324篇
  2015年   337篇
  2014年   420篇
  2013年   467篇
  2012年   479篇
  2011年   423篇
  2010年   315篇
  2009年   286篇
  2008年   220篇
  2007年   293篇
  2006年   253篇
  2005年   224篇
  2004年   152篇
  2003年   151篇
  2002年   142篇
  2001年   123篇
  2000年   101篇
  1999年   56篇
  1998年   49篇
  1997年   33篇
  1996年   39篇
  1995年   31篇
  1994年   44篇
  1993年   48篇
  1992年   37篇
  1991年   15篇
  1990年   19篇
  1989年   8篇
  1988年   8篇
  1987年   12篇
  1986年   4篇
  1985年   15篇
  1984年   11篇
  1983年   10篇
  1982年   13篇
  1980年   5篇
  1979年   1篇
  1951年   2篇
排序方式: 共有7428条查询结果,搜索用时 15 毫秒
81.
With growing environmental awareness, ecological concerns and new legislations, natural fiber‐reinforced plastic composites have received increasing attention during the recent decades. The natural fiber composites have many advantages over traditional glass fiber composites, including lower cost, lighter weight, environmental friendliness, and recyclability. This article reports the findings of the studies done on a new fiber, hitherto unexplored, extracted from Saccharum munja grass. The extracted fibers were further treated using sodium hydroxide to improve its performance in composites. Both treated and untreated fiber‐reinforced composites were prepared by hand lay‐up process using unsaturated polyester resin. Mechanical properties and thermal behavior of the composites were evaluated. The improvement in properties was found for alkali‐treated fiber composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40829.  相似文献   
82.
Microfibrillated cellulose (MFC) is increasingly used with cellulosic substrates and especially with paper materials. Its use with cardboard remains not reported and the study of mechanical and barrier properties of MFC‐coated cardboard has been investigated in this article. The influence of coating process as well as the effect of MFC have been highlighted by comparing different MFC‐coated cardboard samples with PE‐coated cardboard samples. MFC was coated using bar coating process. Their distribution and homogeneity onto cardboard was observed using techniques such as SEM and FE‐SEM. Tests such as oxygen and air permeability, bending stiffness, and compressive strength have been carried out. The coating process used impacts significantly cardboard properties by two opposite ways: on one hand it damages the structure cohesion of cardboard decreasing its compressive strength; on the other hand it increases its bending stiffness by increasing considerably the samples thickness. The addition of MFC counterbalances the negative effects of the coating process: bending stiffness and compressive strength are indeed improved by 30% in machine direction. On the contrary, MFC does not enhance much cardboard barrier properties, although it considerably increases their water absorption. Within a framework of packaging application, MFC will rather have consequent effects on cardboard's properties as blend or as part of the multilayer structure. Other applications have to be considered for its use as top layer. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40106.  相似文献   
83.
A strong antimicrobial activity against Escherichia coli of Cu‐BTC metal‐organic frameworks immobilized over cellulosic fibers is hereby reported. The in situ synthesis of Cu‐BTC metal‐organic frameworks, aka MOF‐199 or HKUST‐1, onto cellulosic substrates was carried out by exposing carboxymethylated cellulosic substrates to Cu(OAC)2, 1,3,5‐benzenetricarboxylic acid and triethylamine solutions following a very specific order. Using an in vitro model, in accordance to ASTM E2149‐13a, we observed that the cellulose‐MOF system was able to completely eliminate the growth of E. coli on agar plates and liquid cultures. The antibacterial activity of the comprising components of MOF‐199 and the cellulosic substrate was also evaluated and determined to be negligible. Since the method used to synthesize MOF‐199 crystals provides a strong bond between the crystals and the cellulosic substrates, the crystals not detach from the anionic cellulosic fibers allowing the modified textile to be washed and reused hence opening a new avenue to fabricate antibacterial clinical fabrics. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40815.  相似文献   
84.
Bi‐functional antibacterial material was prepared by co‐grafting N‐halamine and quaternary ammonium salt monomers from cellulose fiber. The grafted fiber was characterized by Fourier transform infrared spectra, and X‐ray photoelectron spectra. The N‐halamine derived from the precursor 4‐[(acryloxy)methyl]‐4‐ethyl‐2‐oxazolidinone via chlorination treatment and the oxidative chlorine (Cl+) leaching behavior were investigated. The antibacterial activities of singly (only QAs‐functionalized or only Cl+‐releasing) and dual (QAs‐functionalized and Cl+‐releasing) functional cellulose fibers were tested against Gram‐negative Escherichia coli and Gram‐positive Staphylococcus aureus. Compared to singly functionalized formulations, the bi‐functional cellulose fiber exhibited excellent and rapid bactericidal performance against both E. coli and S. aureus. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40070.  相似文献   
85.
TEMPO‐oxidized cellulose nanofibers (TOCNs) were used as nanofillers in this work. Composite nanofibers of polyvinyl alcohol (PVA)/waterborne polyurethane (WPU) reinforced with TOCNs were produced by electrospinning. The reinforcing capability of TOCNs was investigated by tensile tests. Scanning electron microscopy (SEM), X‐ray diffraction, and thermogravimetry analyses were also carried out in order to characterize the appearance, crystallinity, and reinforcing effect of the cellulose nanofibers. SEM results showed that PVA/WPU/TOCNs composite nanofibers presented a highly homogeneous dispersion of TOCNs. The reinforced composites had about 44% increase in their mechanical properties with addition of only 5 wt % of TOCNs while about 42% decrease in elongation at break. The TOCNs reinforced composite nanofibers were more thermally stable than pure PVA/WPU nanofibers. The development of crystalline structure in the composite fibers was observed by XRD. Since PVA, WPU, and TOCNs are hydrophilic, non‐toxic, and biocompatible, and therefore, these nanocomposite nanofibers could be used for tissue scaffolding, filtration materials, and medical industries as wound dressing materials. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41051.  相似文献   
86.
This article reports an exploratory study on the creep and recovery behavior of kenaf/polypropylene nonwoven composites (KPNCs), serving as a bio‐based substitution for polypropylene (PP) plastics in the automotive industry due to the environmental concern. The creep and recovery behavior of KPNC and solid virgin PP were performed by dynamic mechanical analyzer (DMA) which allowed it to be studied extensively. The linear viscoelastic limit (LVL) was found at 1 MPa. Two popular creep models, the four‐element Burgers (FEB) model and the Findley power law (FPL) model, were used to model the creep behavior in this study. The FEB model was found only appropriate for characterizing short‐term creep behavior. In contrast, the FPL model was satisfactory for predicting the long‐term creep performance. The long‐term creep behavior of KPNC in comparison to virgin PP plastic was predicted using the time‐temperature superposition (TTS) principle. The 1‐year creep strains were estimated to be 0.32% for KPNC and 1.00% for virgin PP at 40°C. A three‐day creep test was conducted to validate the effectiveness of the TTS prediction. KPNC showed a better creep resistance and higher recoverability than the virgin PP, especially in a high‐temperature environment. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40726.  相似文献   
87.
Cellulose nanofibers were prepared using TEMPO/NaBr/NaClO oxidation of kraft pulp and successive ultrasonic treatment, and the properties were characterized by conductimetric titration, X‐ray diffraction, and atomic force microscopy. The resulting product was then applied as an anionic microparticle to constitute a microparticulate system with cationic polyacrylamide (CPAM), to induce the flocculation of the kaolin clay suspension. The flocculation effect was evaluated by determining the relative turbidity of clay suspension. The results showed that the obtained cellulose nanofibers had cellulose I structure with higher crystallinity than that of the kraft pulp, and their cross‐sectional dimension was in the range of 3–5 nm. They had more negative zeta potential at neutral and alkaline conditions. It was found that the microparticulate system showed high flocculation effect on kaolin clay at a very low level of nanofiber addition, and a high shear level after CPAM addition was helpful for the flocculation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40450.  相似文献   
88.
A conventional free‐radical initiating process was used to prepare graft copolymers from acrylonitrile (AN) with corn‐cob cellulose with ceric ammonium nitrate (CAN) as an initiator. The optimum grafting was achieved with corn‐cob cellulose (anhydroglucose unit, AGU), mineral acid (H2SO4), CAN, and AN at concentrations of 0.133, 0.081, 0.0145, and 1.056 mol/L, respectively. Furthermore, the nitrile functional groups of the grafted copolymers were converted to amidoxime ligands with hydroxylamine under basic conditions of pH 11 with 4 h of stirring at 70°C. The purified acrylic polymer‐grafted cellulose and polyamidoxime ligand were characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy analysis. The ligand showed an excellent copper binding capacity (4.14 mmol/g) with a faster rate of adsorption (average exchange rate = 7 min), and it showed a good adsorption capacity for other metal ions as well. The metal‐ion adsorption capacities of the ligand were pH‐dependent in the following order: Cu2+ > Co2+ > Mn2+ > Cr3+ > Fe3+ > Zn2+ > Ni2+. The metal‐ion removal efficiency was very high; up to 99% was removed from the aqueous media at a low concentration. These new polymeric chelating ligands could be used to remove aforementioned toxic metal ions from industrial wastewater. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40833.  相似文献   
89.
The steady and dynamic rheological behaviors of two cellulose nanocrystal (CNC) suspensions were investigated over a wide range of concentrations. The viscosity, storage and loss modules increased with increasing CNC concentration, and both CNC suspensions showed three regions in a viscosity‐concentration graph. The two critical concentrations depended on the aspect ratio and corresponded to the overlap and gelation concentration. Because of the higher aspect ratio, switchgrass CNC suspension transitioned into a biphasic state and formed a hydrogel at lower concentrations than those of cotton CNC suspensions. Furthermore, the complex viscosities of both CNC suspensions were higher than their steady viscosities; therefore, neither CNC suspension followed the Cox–Merz rule, which may be attributed to the existence of a liquid crystal domain in each suspension. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40525.  相似文献   
90.
Bacterial cellulose (BC), microcrystalline cellulose (MCC), and bamboo cellulosic fibers (BCFs) were used to reinforce poly(l ‐lactic acid) (PLLA) based bio‐composites. The mechanical properties and crystallization of the composites were studied through mechanical testing, differential scanning calorimetry, X‐ray diffraction, scanning electron microscopy, and polarizing microscope. The incorporation of all three kinds of cellulose increased the stiffness of the composites compared to pure PLLA. The reinforcing effect of the MCC in the composites is most significant. The Young's modulus and impact toughness of the MCC/PLLA composites were increased by 44.4% and 58.8%, respectively. The tensile strength of the MCC/PLLA composites was increased to 71 MPa from 61 MPa of PLLA. However, the tensile strength of the composites reinforced with BCF or BC was lower than PLLA. The three kinds of cellulosic fibers improved the crystallization of PLLA. The BC with smallest size provided the composites with smallest grain and highest crystallinity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41077.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号